Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Косенок Сергей Митейсеровое задание для диагностического тестирования по дисциплине:

Должность: ректор

Дата подписания: 23.06.2025 14:53:08

Структуры и алгоритмы обработки данных Уника<u>льный программный ключ:</u>

e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

Код, направление подготовки	27.03.04 Управление в технических системах
Направленность (профиль)	Инженерия автоматизированных, информационных и робототехнических систем
Форма обучения	очная
Кафедра-разработчик	автоматики и компьютерных систем
Выпускающая кафедра	автоматики и компьютерных систем

Диагностический тест по дисциплине «Структуры и алгоритмы обработки данных»

Проверяемые	Задание	Варианты ответов	Тип сложности
компетенции			
ПК-3.2	1) Рекуррентное выражение временной		легкий
ПК-3.3	сложности алгоритма $T(N)$ определяется		
	выражением $T(N) = T(N-1) + 1$, если $N > 1$ и	$(3) N^N$	
	T(N) = 1 в противном случае.	$(4) N^3$	
	Асимптотическая сложность алгоритма равна		
ПК-3.2	2) Рекуррентное выражение временной	1) ln <i>N</i>	легкий
ПК-3.3	сложности алгоритма $T(N)$ определяется	2) N ln N	
	выражением $T(N) = 2T(N/2) + N$, если $N>1$,	3) $N^2 \ln N$	
	T(1) = 0. Асимптотическая сложность	$(4) N^2$	
	алгоритма равна		
ПК-3.2	3) Модификация сортировкой вставками	1) Получить естественную сортировку	легкий
ПК-3.3	сортировки слиянием позволяет	2) Улучшить временные характеристики	
		сортировки	
		3) Уменьшить требованиям по памяти	
		4) Уменьшить асимптотическую	
		сложность от N^2 до $N \log(N)$	
ПК-3.2	4) Алгоритм сортировки распределяющим	1) Он не обладает необходимыми	легкий
ПК-3.3	подсчетом не используют для сортировки	временными характеристиками	
	строк потому, что	2) Требует дополнительной памяти	
		3) Применим к целым числам	
		4) Имеет линейную асимптотическую	
		сложность	
ПК-3.2	5) Алгоритм последовательного поиска в	1) <i>O</i> (<i>1</i>)	легкий
ПК-3.3	худшем случае при неудачном поиске имеет	(2) O(N)	
	асимптотическую сложность	3) $O(\log N)$	
		4) Нет правильных вариантов ответов	
ПК-3.2	6) Временная сложность некоторого	1) $N^3/3$	средний
ПК-3.3	алгоритма определяется выражением	$(2) N^3$	
	$f(N)=N^3/3+(10N\cdot \ln N)^2$.	3) $(10N \cdot ln \ N)^2$	
		4) $(N \cdot ln \ N)^2$	

	Асимптотическая сложность $O(f(N))$ будет		
	равна (выберите два подходящие варианта		
	ответов)		
ПК-3.2	7) Какая структура данных обеспечивает	1) связный список	средний
ПК-3.3	эффективность добавление элемента,	2) ctek	ередини
11K-3.3	имеющую сложность О(1) (выберите три	3) очередь	
	подходящие варианта ответов)	4) бинарное дерево поиска	
ПК-3.2	8) Пусть алгоритм представлен следующим	1) O(N ²)	ana Hunii
ПК-3.2			средний
11K-3.3	псевдокодом: for (i = 0; i < N/2; i++) {	2) O(N)	
	for $(j = 0; j < N/3; j++)$ {	3) O(NlogN)	
	f(N, other);	$4) O(N^2 \log N)$	
	}	$\begin{array}{c} 5) \text{ O}(N^3) \\ \end{array}$	
	}	6) $O(N^3/6)$	
	причем асимптотическая сложность		
	f(N, other) составляет $O(N)$.		
	Асимптотическая сложность алгоритма равна		
	(выберите два подходящие варианта ответов)		
ПК-3.2	9) Пусть алгоритм представлен следующим	1) $O(N^2)$	средний
ПК-3.3	псевдокодом:	2) O(N)	
	for (i = N; i > 0; i /= 2) {	3) O(<i>N</i> log <i>N</i>)	
	for $(j = 0; j < N/3; j++)$ {	4) $O(N^2 \log N)$	
	f(N, other);	$(5) O(N^3)$	
	1	6) $O(N^3/6)$	
	причем асимптотическая сложность		
	f(N, other) составляет $O(N)$.		
	Асимптотическая сложность алгоритма равна		
	(выберите два подходящие варианта ответов)		
ПК-3.2	10) Принцип организации абстрактного типа	1) FILO (First Input Last Output)	средний
ПК-3.3	данных «стек» (выберите все подходящие	2) FIFO (First Input First Output)	- F
	варианты ответов)	3) LIFO (Last Input First Output)	
	zapramiza orzeroz)	4) Справедливы варианты 1 и 2	
ПК-3.2	11) Алгоритм сортировка вставками имеет в	$O(N^2)$ и $O(N^2/2)$	средний
ПК-3.2	худшем и лучшем случаях асимптотическую	$O(N^2/2)$ и $O(N^2/4)$	ередини
11113.3	сложность соответственно	$O(N^2/2)$ и $O(N)$	
	CHOWING CONTROLLED RHIN	3) O(11 /2) H O(11)	

		4) O(N ²) и O(ln N)	
ПК-3.2	12) Какие из следующих алгоритмов имеют	1) Пирамидальная сортировка	средний
ПК-3.3	асимптотическую сложность $N \log (N)$ в	2) Сортировка Хоара	
	среднем (выберите два подходящие варианта	3) Сортировка вставками	
	ответов)	4) Сортировка выбором	
ПК-3.2	13) В пустое бинарное дерево поиска	1) 5	средний
ПК-3.3	последовательно добавляются ключи 3, 2, 5, 4.	2) 6	
	Чему равна разность сумм ключей между	3) -6	
	левым и правым поддеревьями.	4) -7	
ПК-3.2	14) Количество возможных вариантов	1) 12	средний
ПК-3.3	построения бинарного дерева поиска (его	2) 10	
	структуры), состоящего из четырех узлов,	3) 14	
	равно	4) 18	
ПК-3.2	15) Предложите наиболее оптимальный	1) упорядоченный список	средний
ПК-3.3	способ реализации абстрактного типа данных	2) упорядоченный массив	
	«Множество» (известно, что ключами будут	3) бинарное дерево поиска	
	целые числа типа unsigned char)	4) сбалансированное дерево поиска	
		5) хеш-таблица	
		б) битовый массив	
ПК-3.2	16) Расположите алгоритмы в порядке	1) Бинарный поиск	высокий
ПК-3.3	повышения производительности	2) Последовательный поиск	
	(оцениваемой по временной асимптотической	3) Сортировка вставками	
сложности в среднем) в среднем		4) Сортировка Шелла	
		5) Пирамидальная сортировка	
ПК-3.2	17) Расположите алгоритмы в порядке	1) Сортировка Шелла	высокий
ПК-3.3	повышения производительности	_ / 1 1 1	
	(оцениваемой по асимптотической сложности	3) Сортировка выбором	
	в среднем по количеству операций сравнения	4) Сортировка вставками	
	ключей) в среднем		
ПК-3.2	18) Расположите алгоритмы в порядке	1) Последовательный поиск	высокий
ПК-3.3	повышения производительности	2) Интерполяционный поиск	
	(оцениваемой по асимптотической сложности	3) Поиск прыжками	
	в среднем по количеству операций сравнения	4) Бинарный поиск	
	ключей) в среднем		

ПК-3.2	19) Пусть есть бинарное дерево, у которого	Вводимый ответ	высокий	
ПК-3.3	каждый не листовой узел имеет ровно два			
	потомка. Если у такого дерева 11 листьев, то			
	общее количество узлов равно			
ПК-3.2	20) Предложите наиболее два наиболее	1) упорядоченный список	высокий	
ПК-3.3	оптимальных способа реализации	2) упорядоченный массив		
	абстрактного типа данных «Множество»	3) бинарное дерево поиска		
	(известно, что ключами будут строки)	4) сбалансированное дерево поиска		
		5) хеш-таблица		
		6) битовый массив		